
 

 
Module 4: RF Network Analysis and S-Parameters 
This module is designed to provide an exhaustive and numerically-driven 
understanding of RF network analysis, with a particular focus on Scattering 
Parameters (S-parameters). We will first thoroughly explore why traditional 
circuit analysis methods fall short in the high-frequency domain. Then, we will 
dive into the definition, physical meaning, and conceptual measurement of 
S-parameters, followed by detailed numerical examples illustrating their 
calculation and interpretation. Finally, we will apply S-parameters to analyze 
complex RF circuits, including cascaded networks, and perform critical 
stability analysis with step-by-step numerical demonstrations. 

4.1 Limitations of Z, Y, H, ABCD Parameters at RF 
At lower frequencies, circuit analysis commonly employs parameters like 
Impedance (Z-parameters), Admittance (Y-parameters), Hybrid (H-parameters), 
and ABCD parameters. These methods fundamentally describe a multi-port 
network by relating the total voltages and currents at its various terminals. For 
instance, Z-parameters relate port voltages to port currents (V = Z * I), while 
Y-parameters relate port currents to port voltages (I = Y * V). 

However, as we transition into the Radio Frequency (RF) and microwave 
frequency ranges (typically above a few tens or hundreds of MHz), the 
underlying assumptions for these traditional parameters break down, leading 
to significant practical and theoretical limitations: 

1. Impossibility of Ideal Open-Circuit and Short-Circuit Measurements: 
○ The Problem: All Z, Y, H, and ABCD parameters are 

mathematically defined under specific terminal conditions that are 
extremely difficult, if not impossible, to achieve ideally at RF. 

■ To find Z-parameters, you must apply a current to one port 
and measure voltages at all ports while keeping all other 
ports open-circuited (meaning zero current flows into or out 
of them). 

■ To find Y-parameters, you must apply a voltage to one port 
and measure currents at all ports while keeping all other 
ports short-circuited (meaning zero voltage across them). 

○ Real-World Deviations at RF: 
■ "Open Circuit" Illusion: At RF, simply leaving a port 

unconnected does not create a true open circuit. The 
physical structure of the unconnected terminal (e.g., the 
end of a printed circuit board trace, a component lead) will 
inherently have parasitic capacitance to ground or to other 



nearby conductors. This parasitic capacitance provides a 
path for current at high frequencies, meaning the current is 
not zero, violating the open-circuit condition. The higher the 
frequency, the lower the impedance of this parasitic 
capacitance, making the "open" even less ideal. 

■ "Short Circuit" Illusion: Similarly, connecting a "short" wire 
across a port to achieve a zero-voltage short circuit is also 
problematic. Any physical wire, no matter how short, 
possesses inherent parasitic series inductance. At high 
frequencies, this parasitic inductance (XL =2∗pi∗f∗L) creates 
a non-zero impedance, meaning the voltage across the 
"shorted" terminals is not zero. The higher the frequency, 
the higher the impedance of this parasitic inductance, 
making the "short" even less ideal. 

○ Practical Consequence: Due to these unavoidable parasitic 
effects, measurements performed under "open" or "short" 
conditions at RF are inaccurate and do not represent the true 
intrinsic parameters of the device. The measured values would 
include the unknown and frequency-dependent effects of the 
measurement setup itself. 

2. Stability Issues with Active Devices under Extreme Terminations: 
○ Active Device Vulnerability: Many RF circuits contain active 

devices, such as transistors (e.g., MOSFETs, BJTs). These devices 
are designed to amplify signals, meaning they possess inherent 
gain. However, this gain can lead to instability if positive feedback 
occurs. 

○ Oscillation Trigger: When an active device is subjected to extreme 
load conditions like perfect open circuits (infinite impedance) or 
perfect short circuits (zero impedance) at its input or output ports 
(which are required for Z, Y, H, ABCD measurements), it can 
become unstable. This instability often manifests as oscillation, 
where the device spontaneously generates its own unwanted 
signals, converting DC power into RF power. 

○ Measurement Breakdown: An oscillating device cannot be 
accurately characterized. Its behavior is no longer predictable or 
linear. Attempting to measure its Z, Y, H, or ABCD parameters 
under these unstable conditions would yield meaningless or 
rapidly fluctuating results. This is a critical limitation because 
active devices are the core of most RF communication systems 
(amplifiers, mixers, oscillators). 

3. Neglect of Wave Propagation Effects (Distributed Nature): 
○ Lumped Element Assumption: Traditional Z, Y, H, ABCD 

parameters are rooted in lumped element circuit theory. This 
theory assumes that the dimensions of components and 



interconnections are negligible compared to the signal 
wavelength. Under this assumption, voltages and currents are 
considered uniform across a component, and signal changes 
occur instantaneously throughout the circuit. 

○ Distributed Behavior at RF: As established in Module 1, at RF, the 
wavelength of the signal can be comparable to, or even smaller 
than, the physical dimensions of the circuit's interconnections 
(e.g., traces on a printed circuit board, coaxial cables). In this 
regime, the signal propagates as a wave. Voltage and current are 
no longer constant along a wire; instead, they vary significantly in 
magnitude and phase. This leads to phenomena like reflections 
(when waves encounter impedance mismatches) and standing 
waves. 

○ Inability to Differentiate Waves: Z, Y, H, ABCD parameters 
describe total voltages and currents. They do not intrinsically 
differentiate between the portion of a signal wave that is traveling 
forward (incident wave) and the portion that is traveling backward 
(reflected wave). This distinction is fundamental to understanding 
power flow, reflections, and impedance matching in RF systems. 
Without this differentiation, a complete picture of high-frequency 
circuit behavior is impossible. 

Because of these profound limitations, RF engineers primarily rely on 
Scattering Parameters (S-parameters). S-parameters elegantly bypass these 
issues by focusing on incident and reflected power waves under well-behaved, 
matched termination conditions. 

4.2 S-Parameters (Scattering Parameters) 
S-parameters provide a powerful and practical framework for analyzing, 
designing, and characterizing RF and microwave networks. They describe the 
behavior of a network by relating the incident and reflected power waves at its 
ports. 

Definition and physical significance of S-parameters: 

Instead of total voltages and currents, S-parameters work with normalized 
incident waves (an ) and reflected waves (bn ) at each port 'n' of a network. 
These waves are defined such that their squared magnitudes represent power: 

● ∣an ∣2 represents the power incident on port 'n'. 
● ∣bn ∣2 represents the power reflected from port 'n'. 



These waves are normalized with respect to a specific reference impedance, 
typically the standard characteristic impedance of RF systems, which is 50 
Ohms. 

For any N-port network, the relationship between the reflected waves and 
incident waves is expressed by the S-matrix equation: 

[b]=[S]∗[a] 

Where: 

● [b] is a column vector of reflected waves (b1 ,b2 ,...,bN ). 
● [a] is a column vector of incident waves (a1 ,a2 ,...,aN ). 
● [S] is the N x N S-parameter matrix. 

Let's focus on the most common scenario in RF: a Two-Port Network. This 
represents a vast majority of RF components like amplifiers, filters, 
attenuators, mixers, and so on, which have a defined input (Port 1) and output 
(Port 2). 

For a two-port network, the relationships are explicitly written as: 

b1 =S11 ∗a1 +S12 ∗a2  

b2 =S21 ∗a1 +S22 ∗a2  

Each S-parameter, Sij , is a complex number (possessing both magnitude and 
phase) and is defined as the ratio of a reflected wave (bi ) to an incident wave 
(aj ), under the crucial condition that all other ports are terminated with the 
characteristic impedance (Z0 ). Terminating a port with Z0  implies that there are 
no reflections from that termination, effectively making the incident wave at 
that port zero (ak =0 for k=j). 

Let's delve into the physical significance of each of the four S-parameters for a 
two-port network: 

● S11  (Input Reflection Coefficient): 
○ Definition: S11 =b1 /a1 , when a2 =0. (This means Port 2 is 

terminated with a perfect 50 Ohm load, so no signal is incident on 
Port 2 from the outside.) 

○ Physical Significance: S11  quantifies how well the input port (Port 
1) of the device is matched to the system's characteristic 
impedance (e.g., 50 Ohms). It represents the fraction of the 
incident power wave at the input that is reflected back from the 
input port. A larger magnitude of S11  means more reflection and 
thus a poorer match. 

○ Interpretation: 



■ If ∣S11 ∣=0: Perfect input match. All incident power enters 
the device; none is reflected. This is ideal. 

■ If ∣S11 ∣=1: Complete reflection (total mismatch). All 
incident power is reflected back. This indicates an open 
circuit, a short circuit, or a highly reactive termination. 

■ Typically, for a good match, you aim for ∣S11 ∣ to be a small 
value (e.g., less than 0.1). 

○ Relation to Input Return Loss (RL_in): This is often expressed in 
decibels (dB). 
RLin =−20∗log10 (∣S11 ∣) dB. 
A higher positive value (e.g., 20 dB, 30 dB) for Return Loss 
indicates a better match (less reflection). For example, if 
∣S11 ∣=0.1, RLin =−20∗log10 (0.1)=−20∗(−1)=20 dB. If ∣S11 ∣=0.5, 
RLin =−20∗log10 (0.5)=−20∗(−0.301)≈6.02 dB. A lower return loss 
value implies more power reflected. 

● S21  (Forward Transmission Coefficient / Forward Gain): 
○ Definition: S21 =b2 /a1 , when a2 =0. (Port 2 terminated in 50 Ohms.) 
○ Physical Significance: S21  describes the transmission of a signal 

from the input port (Port 1) to the output port (Port 2). It 
represents the ratio of the transmitted wave emerging from Port 2 
to the incident wave entering Port 1. It is the most important 
parameter for characterizing the gain or loss of an RF circuit. 

○ Interpretation: 
■ For an amplifier, ∣S21 ∣>1: The network provides gain. The 

power gain is equal to ∣S21 ∣2. 
■ For a passive device (like a filter or attenuator), ∣S21 ∣≤1: 

The network either passes the signal with some loss 
(attenuation) or transmits it perfectly (no loss). 

○ Expressed in dB: Gain or Insertion Loss is expressed as 
20∗log10 (∣S21 ∣) dB. For gain, the dB value is positive; for loss 
(attenuation), it's negative. For instance, if ∣S21 ∣=10, Gain = 
20∗log10 (10)=20 dB. If ∣S21 ∣=0.5, Loss = 20∗log10 (0.5)≈−6.02 dB. 

● S12  (Reverse Transmission Coefficient / Reverse Isolation): 
○ Definition: S12 =b1 /a2 , when a1 =0. (Port 1 terminated in 50 Ohms.) 
○ Physical Significance: S12  quantifies the transmission of a signal 

from the output port (Port 2) back to the input port (Port 1). It is a 
measure of the reverse isolation or reverse gain of the device. 

○ Interpretation: 
■ For an ideal amplifier, ∣S12 ∣ should be very small (close to 

0). This indicates excellent reverse isolation, meaning 
signals originating from the output (e.g., reflections from a 
mismatched load, or other signals at the output) do not 
significantly feed back to or interfere with the input signal. 
High reverse isolation is crucial for amplifier stability. 



■ If S12 =0, the device is considered unilateral. This is an ideal 
condition rarely achieved perfectly in practice, but often 
strived for in amplifier design. 

○ Expressed in dB: Reverse Isolation is typically given as 
−20∗log10 (∣S12 ∣) dB. A higher positive value (e.g., 30 dB, 40 dB) 
signifies better isolation. For example, if ∣S12 ∣=0.01, Isolation = 
−20∗log10 (0.01)=−20∗(−2)=40 dB. 

● S22  (Output Reflection Coefficient): 
○ Definition: S22 =b2 /a2 , when a1 =0. (Port 1 terminated in 50 Ohms.) 
○ Physical Significance: S22  quantifies how well the output port 

(Port 2) of the device is matched to the system's characteristic 
impedance. It represents the fraction of the incident power wave 
at the output that is reflected back from the output port. 

○ Interpretation: Similar to S11 , a smaller magnitude of S22  
indicates a better output match. 

○ Relation to Output Return Loss (RL_out): RLout =−20∗log10 (∣S22 ∣) 
dB. 

Numerical Example 4.2.1: Interpreting S-Parameters (Detailed) 

Imagine a single-stage RF amplifier designed for operation at 1.8 GHz. After 
fabricating and testing it with a Vector Network Analyzer (VNA) at 1.8 GHz with 
50 Ohm terminations, the following S-parameters are measured: 

S11 =0.15∠135∘ (Magnitude and phase) 

S21 =4.5∠30∘ 

S12 =0.02∠−15∘ 

S22 =0.25∠−70∘ 

Let's interpret each of these values: 

1. Input Reflection Coefficient (S11 ): 
○ Magnitude: ∣S11 ∣=0.15 
○ Phase: 135∘ 
○ Interpretation: A magnitude of 0.15 means that 15% of the input 

voltage wave (or 2.25% of the input power, since Power is 
proportional to Voltage squared, so 0.152=0.0225) is reflected 
back from the amplifier's input. 

○ Return Loss Calculation: 
RLin =−20∗log10 (∣S11 ∣)=−20∗log10 (0.15) 
log10 (0.15)≈−0.8239 
RLin =−20∗(−0.8239)≈16.48 dB 



○ Conclusion: A return loss of approximately 16.48 dB is generally 
considered a reasonably good input match for many RF 
applications, implying that most of the incident power is accepted 
by the amplifier. 

2. Forward Transmission Coefficient (S21 ): 
○ Magnitude: ∣S21 ∣=4.5 
○ Phase: 30∘ 
○ Interpretation: A magnitude of 4.5 means that the voltage wave at 

the output is 4.5 times larger than the incident voltage wave at the 
input (assuming 50 Ohm terminations at both ports). 

○ Power Gain Calculation: 
Power Gain (linear) =∣S21 ∣2=(4.5)2=20.25 
This means the output power is 20.25 times the input power. 

○ Gain in dB: 
Gain (dB) =20∗log10 (∣S21 ∣)=20∗log10 (4.5) 
log10 (4.5)≈0.6532 
Gain (dB) =20∗(0.6532)≈13.06 dB 

○ Conclusion: The amplifier provides a healthy gain of 
approximately 13.06 dB, which is typical for a single-stage RF 
amplifier. 

3. Reverse Transmission Coefficient (S12 ): 
○ Magnitude: ∣S12 ∣=0.02 
○ Phase: −15∘ 
○ Interpretation: A magnitude of 0.02 indicates that only 2% of a 

signal incident on the output port would be transmitted back to 
the input port. This signifies good isolation. 

○ Reverse Isolation Calculation: 
Isolation (dB) =−20∗log10 (∣S12 ∣)=−20∗log10 (0.02) 
log10 (0.02)≈−1.699 
Isolation (dB) =−20∗(−1.699)≈33.98 dB 

○ Conclusion: An isolation of nearly 34 dB is excellent. This implies 
that the amplifier is very close to being unilateral, which helps in 
preventing unwanted feedback and ensures stable operation. 

4. Output Reflection Coefficient (S22 ): 
○ Magnitude: ∣S22 ∣=0.25 
○ Phase: −70∘ 
○ Interpretation: A magnitude of 0.25 means that 25% of the incident 

voltage wave at the output port (if there were an incident wave, 
e.g., from a load mismatch) would be reflected back. 

○ Return Loss Calculation: 
RLout =−20∗log10 (∣S22 ∣)=−20∗log10 (0.25) 
log10 (0.25)≈−0.6021 
RLout =−20∗(−0.6021)≈12.04 dB 



○ Conclusion: An output return loss of 12.04 dB indicates a 
moderately good output match. It's not as good as the input 
match, suggesting that a small amount of power might be 
reflected from the output back into the amplifier if the load 
connected to it is not perfectly 50 Ohms. 

Measurement of S-parameters using Vector Network Analyzer (VNA) - 
conceptual: 

The Vector Network Analyzer (VNA) is the workhorse instrument for measuring 
S-parameters. It's called "Vector" because it measures both the magnitude and 
phase of the S-parameters. 

Conceptual Working Principle (Step-by-Step with Analogy): 

Imagine you have a complex black box (your Device Under Test, or DUT) with 
two access points (ports). You want to understand how signals behave when 
they interact with this box. 

1. Signal Generation (The "Test Beam"): 
○ The VNA starts by generating a very precise, stable, and tunable 

RF signal, much like shining a light beam. This is your "incident 
wave" (a1  or a2 ). 

○ Example: The VNA might generate a 1 GHz sine wave. 
2. Launching the Test Beam and Monitoring its Path: 

○ The VNA directs this test signal into one of the DUT's ports (let's 
say Port 1). 

○ Before the signal even reaches the DUT, the VNA has internal 
components called directional couplers. Think of a directional 
coupler as a "traffic cop" that can accurately distinguish between 
signals traveling in one direction (towards the DUT) and signals 
traveling in the opposite direction (reflected from the DUT). 

○ The VNA uses these couplers to precisely measure the strength 
and phase of the outgoing incident wave (a1 ). 

3. Measuring the Response (Reflected and Transmitted Beams): 
○ As the incident wave (a1 ) enters the DUT at Port 1: 

■ Some of it might be reflected back from Port 1 (this is the 
b1  wave). The VNA measures this reflected wave using the 
same directional coupler at Port 1. 

■ Some of it might be transmitted through the DUT and 
emerge from Port 2 (this is the b2  wave). To accurately 
measure this, Port 2 of the DUT needs to be terminated with 
a perfect, reflection-less load (usually 50 Ohms). This 
ensures that any wave emerging from Port 2 is truly 



transmitted and doesn't get reflected back into the DUT 
from the outside. The VNA measures this transmitted wave 
(b2 ) using a directional coupler at Port 2. 

○ Example: If you send a 1V, 0-degree phase wave into Port 1: 
■ You might measure 0.15V, 135-degree phase reflected from 

Port 1 (b1 ). 
■ You might measure 4.5V, 30-degree phase transmitted out 

of Port 2 (b2 ). 
4. Calculating the First Set of S-parameters (S11  and S21 ): 

○ From these measurements, the VNA calculates: 
■ S11 =b1 /a1 =(0.15∠135∘)/(1∠0∘)=0.15∠135∘ 
■ S21 =b2 /a1 =(4.5∠30∘)/(1∠0∘)=4.5∠30∘ 

5. Reversing the Flow (for S12  and S22 ): 
○ To get the remaining S-parameters (S12  and S22 ), the VNA 

reverses the process. It now sends the test signal (a2 ) into Port 2 
of the DUT. 

○ Crucially, Port 1 is now terminated with a perfect 50 Ohm load to 
prevent external reflections from interfering with the 
measurement. 

○ The VNA measures: 
■ The reflected wave (b2 ) from Port 2. 
■ The transmitted wave (b1 ) that emerges from Port 1 (this is 

the reverse transmission). 
6. Calculating the Second Set of S-parameters (S12  and S22 ): 

○ From these new measurements, the VNA calculates: 
■ S22 =b2 /a2  
■ S12 =b1 /a2  

7. Frequency Sweep: 
○ The entire sequence (steps 1-6) is rapidly repeated across a wide 

range of frequencies. The VNA "sweeps" through hundreds or 
thousands of frequency points to characterize the DUT's 
S-parameters over its entire operating bandwidth. 

○ Example: For an amplifier designed for 1.7 GHz to 2.0 GHz, the 
VNA would sweep from 1.6 GHz to 2.1 GHz, taking measurements 
at 1000 points. 

8. Display and Analysis: 
○ The VNA's sophisticated software processes these complex 

number measurements and displays them in various useful 
formats: 

■ Rectangular Plots: Magnitude (in dB) vs. Frequency, Phase 
(in degrees) vs. Frequency for each S-parameter. This is 
great for seeing gain, loss, and matching across a band. 



■ Smith Charts: Reflection coefficients (S11 , S22 ) are often 
plotted on a Smith Chart, which graphically shows 
impedance matching and stability regions. 

Crucial Point: Calibration: Before any actual device measurement, the VNA 
must undergo a precise calibration procedure. This involves connecting 
known standards (e.g., a perfect open circuit, a perfect short circuit, a perfect 
50 Ohm load, and a direct connection "thru" between VNA ports) to the 
measurement cables. The VNA uses these known responses to mathematically 
remove the parasitic effects of the test cables and adapters, ensuring that the 
S-parameters measured truly represent only the DUT. Without proper 
calibration, measurements would be meaningless. 

4.3 Relationship between S-parameters and other parameters 
While S-parameters are the preferred language in RF, occasionally it becomes 
necessary to convert between S-parameters and other network parameters (Z, 
Y, H, ABCD). This typically arises when integrating RF components into a 
larger system simulated or designed using different parameter sets, or when 
comparing with older datasheets. 

The conversion process is based on the fundamental definitions of the 
normalized incident and reflected waves (an  and bn ) in terms of the total port 
voltages (Vn ) and currents (In ), relative to the system's characteristic 
impedance (Z0 ). 

The relationships are: 

Vn =Z00.5 ∗(an +bn ) 

In =Z0−0.5 ∗(an −bn ) 

Conversely: 

an =(Vn +Z0 ∗In )/(2∗Z00.5 ) 

bn =(Vn −Z0 ∗In )/(2∗Z00.5 ) 

Using these fundamental expressions, complex algebraic manipulations allow 
us to derive conversion formulas. These formulas are usually for a 2-port 
network. Manual calculation is extremely tedious due to the involvement of 
complex numbers, so in practice, these conversions are almost exclusively 
performed by specialized RF design software (like Keysight ADS, Cadence 
Virtuoso, Ansys HFSS, etc.). 



Let's look at one example of such a conversion formula, S-parameters to 
Z-parameters, for a 2-port network, operating with characteristic impedance 
Z0 : 

First, we need to calculate a determinant-like term, often denoted as ΔS : 

ΔS =S11 ∗S22 −S12 ∗S21  

Then, the Z-parameters can be found using the following equations: 

Z11 =Z0 ∗((1+S11 )(1−S22 )+S12 S21 )/((1−S11 )(1−S22 )−S12 S21 ) 

Z12 =Z0 ∗(2∗S12 )/((1−S11 )(1−S22 )−S12 S21 ) 

Z21 =Z0 ∗(2∗S21 )/((1−S11 )(1−S22 )−S12 S21 ) 

Z22 =Z0 ∗((1−S11 )(1+S22 )+S12 S21 )/((1−S11 )(1−S22 )−S12 S21 ) 

Notice that the denominator for all Z-parameters is the same term: 
(1−S11 )(1−S22 )−S12 S21 , which is often written as (1−S11 )(1−S22 )−S12 S21 =DS  
or (1−S11 )(1−S22 )−ΔS . 

Similarly, here are the formulas for S-parameters to Y-parameters: 

Again, calculate a common denominator term, denoted as DY : 

DY =(1+S11 )(1+S22 )−S12 S21  

Then, the Y-parameters are: 

Y11 =(1/Z0 )∗((1−S11 )(1+S22 )+S12 S21 )/DY  

Y12 =(1/Z0 )∗(−2∗S12 )/DY  

Y21 =(1/Z0 )∗(−2∗S21 )/DY  

Y22 =(1/Z0 )∗((1+S11 )(1−S22 )+S12 S21 )/DY  

Numerical Example 4.3.1: Converting S-parameters to Z-parameters 
(Conceptual Walkthrough) 

Let's use the amplifier S-parameters from Example 4.2.1 at 1.8 GHz, with Z0 =50 
Ohms: 

S11 =0.15∠135∘ 

S21 =4.5∠30∘ 

S12 =0.02∠−15∘ 



S22 =0.25∠−70∘ 

Step 1: Convert all S-parameters to rectangular form. 

This is essential for complex number multiplication and subtraction. 

● S11 =0.15∗(cos135∘+jsin135∘)=0.15∗(−0.7071+j0.7071)=−0.106065+j0.1060
65 

● S12 =0.02∗(cos(−15∘)+jsin(−15∘))=0.02∗(0.9659−j0.2588)=0.01932−j0.00517
6 

● S21 =4.5∗(cos30∘+jsin30∘)=4.5∗(0.8660+j0.5)=3.897+j2.25 
● S22 =0.25∗(cos(−70∘)+jsin(−70∘))=0.25∗(0.3420−j0.9397)=0.0855−j0.234925 

Step 2: Calculate ΔS =S11 S22 −S12 S21  

This involves multiplying two pairs of complex numbers and then subtracting 
the results. 

● S11 S22 =(−0.106065+j0.106065)∗(0.0855−j0.234925) 
=(−0.106065)(0.0855)+(−0.106065)(−j0.234925)+(j0.106065)(0.0855)+(j0.106
065)(−j0.234925) 
=−0.00907+j0.0249+j0.00907+0.0249 (after j2=−1) 
=0.01583+j0.03397 

● S12 S21 =(0.01932−j0.005176)∗(3.897+j2.25) 
=(0.01932)(3.897)+(0.01932)(j2.25)+(−j0.005176)(3.897)+(−j0.005176)(j2.25) 
=0.07529+j0.04347−j0.02016+0.011646 (after j2=−1) 
=0.086936+j0.02331 

● ΔS =(0.01583+j0.03397)−(0.086936+j0.02331) 
=(0.01583−0.086936)+j(0.03397−0.02331) 
=−0.071106+j0.01066 

Step 3: Calculate the common denominator term for the Z-parameter formulas. 

Denominator DZ =(1−S11 )(1−S22 )−S12 S21  

We know S12 S21  from above. 

● 1−S11 =1−(−0.106065+j0.106065)=1.106065−j0.106065 
● 1−S22 =1−(0.0855−j0.234925)=0.9145+j0.234925 
● (1−S11 )(1−S22 )=(1.106065−j0.106065)∗(0.9145+j0.234925) 

=(1.106065)(0.9145)+(1.106065)(j0.234925)+(−j0.106065)(0.9145)+(−j0.1060
65)(j0.234925) 
=1.0119+j0.2598−j0.0969+0.0249 
=1.0368+j0.1629 



● DZ =(1.0368+j0.1629)−(0.086936+j0.02331) 
=(1.0368−0.086936)+j(0.1629−0.02331) 
=0.949864+j0.13959 

Step 4: Plug values into each Z-parameter formula. 

This involves more complex number multiplications, additions, and divisions. 
For instance, for Z11 : 

Z11 =Z0 ∗((1+S11 )(1−S22 )+S12 S21 )/DZ  

● 1+S11 =1+(−0.106065+j0.106065)=0.893935+j0.106065 
● (1+S11 )(1−S22 )=(0.893935+j0.106065)∗(0.9145+j0.234925) 

=0.8174+j0.2099+j0.0969−0.0249=0.7925+j0.3068 
● Numerator of Z11  (before multiplying by Z0 ): 

(0.7925+j0.3068)+(0.086936+j0.02331) 
=0.879436+j0.33011 

● Finally for Z11 : 
Z11 =50∗(0.879436+j0.33011)/(0.949864+j0.13959) 
This last step is a complex number division. You would typically convert 
numerator and denominator to polar form, divide magnitudes, and 
subtract phases, then convert back to rectangular if desired. 
(0.879436+j0.33011) in polar: 0.9400∠20.6∘ 
(0.949864+j0.13959) in polar: 0.9600∠8.35∘ 
Ratio: (0.9400/0.9600)∠(20.6∘−8.35∘)=0.979∠12.25∘ 
Z11 =50∗(0.979∠12.25∘)=48.95∠12.25∘ Ohms 
In rectangular: 
48.95∗(cos12.25∘+jsin12.25∘)=48.95∗(0.977+j0.212)=47.82+j10.38 Ohms 

As you can see, this process is numerically intensive and prone to error if 
done manually. This is why RF engineers rely heavily on simulation software 
for such conversions and analyses. The key takeaway is that the relationships 
exist, and the transformation is based purely on the complex S-parameters 
and the characteristic impedance. 

4.4 Analysis of RF Circuits using S-parameters 
S-parameters are the native language of RF circuit design. They allow us to 
directly evaluate crucial performance metrics, taking into account reflections 
and interactions between components. 

Two-Port Network Analysis: 

Beyond just looking at individual S-parameter values, we often need to 
calculate the actual input reflection coefficient, output reflection coefficient, 



and the overall gain of a two-port network when it's connected to specific 
source and load impedances. These are essential for designing matching 
networks and predicting real-world performance. 

1. Input Reflection Coefficient (Γin ): 
This parameter tells us what reflection coefficient an external source 
"sees" when looking into the input port (Port 1) of our two-port network, 
given that a specific load is connected to the output port (Port 2). This is 
critical for designing the source matching network. 
The formula for Γin  is: 
Γin =S11 +(S12 ∗S21 ∗ΓL )/(1−S22 ∗ΓL ) 
Where: 

○ S11 ,S12 ,S21 ,S22  are the S-parameters of the two-port network 
(complex numbers). 

○ ΓL  is the load reflection coefficient (a complex number) connected 
to Port 2. It is calculated as ΓL =(ZL −Z0 )/(ZL +Z0 ), where ZL  is the 
actual load impedance and Z0  is the system characteristic 
impedance (e.g., 50 Ohms). 

2. Special Case: If the load is perfectly matched to the system impedance 
(ZL =Z0 ), then ΓL =0. In this case, the formula simplifies to: 
Γin =S11  
This confirms that S11  indeed represents the input match when the 
output is ideally terminated. 

3. Output Reflection Coefficient (Γout ): 
Symmetrically, Γout  tells us what reflection coefficient an external load 
"sees" when looking into the output port (Port 2) of our two-port 
network, given that a specific source is connected to the input port (Port 
1). This is vital for designing the load matching network. 
The formula for Γout  is: 
Γout =S22 +(S12 ∗S21 ∗ΓS )/(1−S11 ∗ΓS ) 
Where: 

○ S11 ,S12 ,S21 ,S22  are the S-parameters of the two-port network. 
○ ΓS  is the source reflection coefficient (a complex number) 

connected to Port 1. It is calculated as ΓS =(ZS −Z0 )/(ZS +Z0 ), where 
ZS  is the actual source impedance and Z0  is the system 
characteristic impedance. 

4. Special Case: If the source is perfectly matched (ZS =Z0 ), then ΓS =0. In 
this case, the formula simplifies to: 
Γout =S22  
This confirms that S22  represents the output match when the input is 
ideally terminated. 

5. Transducer Power Gain (GT ): 
This is one of the most important gain definitions in RF, especially for 
amplifiers. It represents the ratio of the actual average power delivered 



to the load (PL ) to the maximum available power from the source 
(Pavail,S ). It takes into account mismatches at both the input and 
output, which significantly impact real-world power transfer. 
The general formula for Transducer Power Gain is: 
GT =PL /Pavail,S =(∣S21 ∣2∗(1−∣ΓS ∣2)∗(1−∣ΓL ∣2))/(∣(1−S11 ∗ΓS )∗(1−S22 ∗ΓL )
−S12 ∗S21 ∗ΓS ∗ΓL ∣2) 
This formula looks daunting, but it accounts for all reflections. Let's look 
at important special cases: 

○ Unilateral Transducer Power Gain (GTU ): This is applicable if the 
device is unilateral, meaning S12 =0. This significantly simplifies 
the formula because the term S12 ∗S21 ∗ΓS ∗ΓL  becomes zero. 
GTU =(∣S21 ∣2∗(1−∣ΓS ∣2)∗(1−∣ΓL ∣2))/(∣1−S11 ∗ΓS ∣2∗∣1−S22 ∗ΓL ∣2) 
This form clearly shows that for a unilateral device, the overall 
gain is a product of three factors: 

1. Gain from the device itself (∣S21 ∣2). 
2. Input matching factor ((1−∣ΓS ∣2)/∣1−S11 ∗ΓS ∣2). 
3. Output matching factor ((1−∣ΓL ∣2)/∣1−S22 ∗ΓL ∣2). 

Each factor accounts for the power lost due to mismatch at 
its respective port. 

○ Maximum Available Gain (GMAG ): This is the maximum gain that 
can be achieved from an amplifier when both the input and output 
are simultaneously conjugately matched for maximum power 
transfer, and the device is unconditionally stable (K > 1, ∣Δ∣<1). 
GMAG =∣S21 /S12 ∣∗(K−K2−1 ) 
This value is a theoretical maximum and provides a benchmark 
for amplifier performance. 

Cascaded Networks: 

Many RF systems are built by connecting multiple two-port networks in series. 
For example, a receiver chain might consist of an LNA, followed by a filter, 
then a mixer, and so on. Analyzing the overall performance of such a cascaded 
system using individual S-parameters is a common task. 

While it is possible to derive formulas for cascading S-parameters manually, 
they become very complex quickly. The most practical approach for cascading 
two networks (let's call them Network A and Network B) is: 

1. Convert S-parameters to ABCD parameters for each network. (ABCD 
parameters are generally easier for cascading in series.) 

○ [ABCD]Total =[ABCD]A ∗[ABCD]B  
2. Multiply the individual ABCD matrices together to obtain the overall 

ABCD matrix of the cascaded system. 
3. Convert the resulting total ABCD matrix back to S-parameters. 



This process is almost exclusively handled by RF simulation software (e.g., 
Keysight ADS, Genesys, AWR Microwave Office). These tools automatically 
perform these complex matrix operations, allowing designers to easily 
simulate the overall gain, matching, and stability of an entire RF front-end by 
simply connecting individual component models. 

Conceptual Illustration: 

Imagine an LNA (Network A) connected to an RF Filter (Network B). 

● LNA has S-parameters: S11A ,S12A ,S21A ,S22A  
● Filter has S-parameters: S11B ,S12B ,S21B ,S22B  

When these are cascaded, the overall system's S-parameters 
(S11Total ,S21Total , etc.) will depend not just on the individual gains, but 
also on how well S22A  (output match of LNA) matches S11B  (input 
match of Filter). Any mismatch between these intermediate stages will 
cause reflections, leading to gain ripple or overall lower gain than 
simply multiplying the individual S21  values. The beauty of 
S-parameters is that they inherently capture these interaction effects. 

Numerical Example 4.4.2: Calculating Input Reflection Coefficient with a 
Mismatched Load (Detailed) 

We will continue with the amplifier S-parameters from Example 4.2.1 at 1.8 
GHz, with Z0 =50 Ohms: 

S11 =0.15∠135∘ 

S12 =0.02∠−15∘ 

S21 =4.5∠30∘ 

S22 =0.25∠−70∘ 

Now, let's say this amplifier is connected to a slightly mismatched antenna 
with an impedance ZL =75−j20 Ohms. We want to find the input reflection 
coefficient (Γin ) seen by the previous stage (the source). 

Step 1: Calculate the load reflection coefficient (ΓL ) from ZL . 

Formula: ΓL =(ZL −Z0 )/(ZL +Z0 ) 

Given ZL =75−j20 Ohms and Z0 =50 Ohms. 

Numerator: ZL −Z0 =(75−j20)−50=25−j20 Ohms 

Denominator: ZL +Z0 =(75−j20)+50=125−j20 Ohms 



Now, perform the complex division: ΓL =(25−j20)/(125−j20) 

Convert numerator and denominator to polar form: 

● Numerator: Magnitude = 252+(−20)2 =625+400 =1025 ≈32.016 
Phase = arctan(−20/25)=arctan(−0.8)≈−38.66∘ 
So, 25−j20=32.016∠−38.66∘ 

● Denominator: Magnitude = 1252+(−20)2 =15625+400 =16025 ≈126.59 
Phase = arctan(−20/125)=arctan(−0.16)≈−9.09∘ 
So, 125−j20=126.59∠−9.09∘ 

Now, divide the polar forms: 

ΓL =(32.016/126.59)∠(−38.66∘−(−9.09∘)) 

ΓL =0.2529∠(−38.66∘+9.09∘) 

ΓL =0.2529∠−29.57∘ 

Step 2: Convert S-parameters and ΓL  to rectangular form for calculations in 
the Γin  formula. 

We already have the rectangular forms for S-parameters from Example 4.3.1. 

ΓL =0.2529∗(cos(−29.57∘)+jsin(−29.57∘)) 

ΓL =0.2529∗(0.8697−j0.4936)=0.2199−j0.1248 

Step 3: Calculate the terms in the Γin  formula: 
Γin =S11 +(S12 ∗S21 ∗ΓL )/(1−S22 ∗ΓL ) 

● Calculate S12 ∗S21  (from Example 4.3.1 - rectangular form of 0.05∠15∘): 
S12 ∗S21 =(0.02∠−15∘)∗(4.5∠30∘)=0.09∠15∘ 
Rectangular: 
0.09∗(cos15∘+jsin15∘)=0.09∗(0.9659+j0.2588)=0.08693+j0.02329 

● Calculate S12 ∗S21 ∗ΓL  (numerator of the second term): 
(0.09∠15∘)∗(0.2529∠−29.57∘) 
=(0.09∗0.2529)∠(15∘−29.57∘) 
=0.02276∠−14.57∘ 
Rectangular: 0.02276∗(cos(−14.57∘)+jsin(−14.57∘)) 
=0.02276∗(0.9676−j0.2515)=0.02203−j0.00572 

● Calculate 1−S22 ∗ΓL  (denominator of the second term): 
First, S22 ∗ΓL =(0.25∠−70∘)∗(0.2529∠−29.57∘) 
=(0.25∗0.2529)∠(−70∘−29.57∘) 
=0.063225∠−99.57∘ 
Rectangular: 0.063225∗(cos(−99.57∘)+jsin(−99.57∘)) 
=0.063225∗(−0.1663−j0.9861) 



=−0.01051−j0.06232 
Now, 1−(−0.01051−j0.06232)=1+0.01051+j0.06232=1.01051+j0.06232 

● Perform the division for the second term: 
Numerator: 0.02203−j0.00572 
Denominator: 1.01051+j0.06232 
Convert to polar: 
Num: 0.022032+(−0.00572)2 =0.000485+0.0000327 =0.0005177 ≈0.02275 
Phase: arctan(−0.00572/0.02203)=arctan(−0.2596)≈−14.56∘ 
So, 0.02275∠−14.56∘ 
Denom: 1.010512+0.062322 =1.0211+0.00388 =1.02498 ≈1.0124 
Phase: arctan(0.06232/1.01051)=arctan(0.06167)≈3.53∘ 
So, 1.0124∠3.53∘ 
Division: (0.02275/1.0124)∠(−14.56∘−3.53∘) 
=0.02247∠−18.09∘ 
Rectangular: 0.02247∗(cos(−18.09∘)+jsin(−18.09∘)) 
=0.02247∗(0.9507−j0.3105)=0.02136−j0.00698 

Step 4: Add S11  to the result of the second term. 

S11 =−0.106065+j0.106065 

Γin =(−0.106065+j0.106065)+(0.02136−j0.00698) 

Γin =(−0.106065+0.02136)+j(0.106065−0.00698) 

Γin =−0.084705+j0.099085 

Step 5: Convert final Γin  to polar form (often preferred for reflection 
coefficients). 

Magnitude: 
∣Γin ∣=(−0.084705)2+(0.099085)2 =0.007175+0.009818 =0.016993 ≈0.13036 

Phase: arctan(0.099085/−0.084705)=arctan(−1.1697)≈−49.49∘. Since the real 
part is negative and imaginary is positive, this angle is in the second quadrant. 
So, 180∘−49.49∘=130.51∘. 

So, Γin =0.13036∠130.51∘ 

Interpretation: With the mismatched load (ZL =75−j20 Ohms), the input 
reflection coefficient is 0.13036∠130.51∘. 

Compare this to S11 =0.15∠135∘. The magnitude has slightly decreased, 
meaning the input match has slightly improved compared to the ideal 50 Ohm 
load case. This shows how the load termination can affect the input 
impedance of a bilateral device, which is a critical consideration for RF system 



design. This kind of detailed calculation is often done by RF simulation 
software. 

4.5 Stability Analysis 
Stability is arguably the most critical aspect of RF amplifier design. An 
amplifier is stable if it remains free from unwanted oscillations under all 
specified operating conditions. An unstable amplifier will not perform its 
intended function; instead, it will act as an oscillator, converting DC power into 
unwanted RF signals, potentially damaging components, or severely 
degrading system performance. S-parameters provide direct methods to 
assess the stability of active two-port networks. 

Unilateral vs. Bilateral Networks: 

The concept of unilateral or bilateral nature is fundamental to understanding 
feedback and stability. 

● Unilateral Network: An ideal unilateral network is a theoretical construct 
where there is absolutely no signal transmission or feedback from the 
output port back to the input port. 

○ S-parameter Condition: For a two-port network, this means S12 =0. 
○ Implication: If a device is truly unilateral, its input characteristics 

(like Γin ) are completely independent of the load connected to its 
output, and its output characteristics (like Γout ) are completely 
independent of the source connected to its input. This 
significantly simplifies design, as input and output matching 
networks can be designed independently. 

○ Reality: Perfect unilateralism is rarely achieved in real active 
devices like transistors due to unavoidable parasitic capacitances 
and inductances that provide a feedback path. However, many RF 
amplifiers are designed to be "approximately unilateral" by 
ensuring very high reverse isolation (very small ∣S12 ∣). 

● Bilateral Network: A bilateral network is one where there is some degree 
of signal transmission or feedback from the output back to the input, 
meaning S12 =0. 

○ Reality: Almost all practical active devices at RF frequencies are 
bilateral. Even a tiny S12  can become significant at high 
frequencies or high gain. 

○ Implication: The input impedance of a bilateral device is 
dependent on the load connected to its output (Γin  depends on 
ΓL ), and its output impedance is dependent on the source 
connected to its input (Γout  depends on ΓS ). This 
interdependence makes the design of simultaneous matching 
networks and the analysis of stability more complex. If the 
internal feedback (S12 ) combined with external source and load 



reflections creates a loop gain greater than unity with a phase 
shift of 360 degrees (or 0 degrees), the device will oscillate. 

Conditions for Unconditional Stability: 

An active two-port network (like a transistor or an amplifier stage) is 
considered unconditionally stable if it will remain stable (i.e., not oscillate) 
regardless of what passive source impedance (ZS , corresponding to ∣ΓS ∣≤1) 
or passive load impedance (ZL , corresponding to ∣ΓL ∣≤1) is connected to it. 
This is the most desirable characteristic for a general-purpose amplifier that 
needs to operate reliably in various system environments. 

The unconditional stability of a two-port network can be mathematically 
determined from its S-parameters using two key criteria: the K-factor (Rollett 
stability factor) and the Delta (Δ) parameter. 

The conditions for unconditional stability are: 

1. K > 1: The K-factor (stability factor) must be greater than 1. 
K=(1−∣S11 ∣2−∣S22 ∣2+∣Δ∣2)/(2∗∣S12 ∗S21 ∣) 
Where Δ (Delta) is the determinant of the S-matrix, calculated as: 
Δ=S11 ∗S22 −S12 ∗S21  

2. ∣Δ∣<1: The magnitude of the determinant of the S-matrix must be less 
than 1. 

Interpretation of Stability Conditions: 

● If K > 1 AND ∣Δ∣<1: The network is unconditionally stable. This is the 
ideal scenario for an amplifier. You can connect any passive source and 
load, and the amplifier will not oscillate. This provides great flexibility in 
design. 

● If K < 1: The network is conditionally stable. This means the device can 
be made stable for certain source and load terminations, but there exist 
specific passive source and load impedances that will cause it to 
oscillate. In this case, designers must use stability circles (a graphical 
tool plotted on the Smith Chart, which will be covered in a later module) 
to identify the regions of source and load impedances that cause 
instability. The matching networks must then be designed to avoid these 
regions. This requires more careful design and analysis. 

● If K = 1: The network is marginally stable, sitting right at the boundary 
between unconditional and conditional stability. Any slight change in 
parameters or operating conditions could push it into instability. 

Physical Meaning of K and Δ: 



● The K-factor essentially quantifies the inherent "stability margin" of the 
device. It compares the internal positive feedback (related to S12 ∗S21 ) 
to the reflections at the input and output. A higher K-factor implies that 
the device is less likely to oscillate. 

● The Δ parameter (determinant of the S-matrix) is also related to the 
internal feedback and transfer characteristics of the device. The 
condition ∣Δ∣<1 is necessary to ensure that the network is "passive at 
the boundary," meaning it cannot self-oscillate simply from energy 
circulating within the network itself when terminated reactively. 

Numerical Example 4.5.1: Stability Analysis using K and Delta (Detailed Steps) 

Let's evaluate the stability of a transistor at a specific operating point and 
frequency, say 8 GHz, with the following measured S-parameters: 

S11 =0.9∠−120∘ 

S12 =0.08∠60∘ 

S21 =3.0∠90∘ 

S22 =0.6∠−45∘ 

Step 1: Calculate the magnitude squared of each S-parameter. 

These are used in the K-factor formula. 

● ∣S11 ∣2=(0.9)2=0.81 
● ∣S12 ∣2=(0.08)2=0.0064 
● ∣S21 ∣2=(3.0)2=9.0 
● ∣S22 ∣2=(0.6)2=0.36 

Step 2: Calculate Delta (Δ=S11 ∗S22 −S12 ∗S21 ). 

This requires converting S-parameters to rectangular form first, performing 
complex multiplication, and then complex subtraction. 

● Convert to Rectangular Form: 
○ S11 =0.9∗(cos(−120∘)+jsin(−120∘))=0.9∗(−0.5−j0.8660)=−0.45−j0.779

4 
○ S12 =0.08∗(cos60∘+jsin60∘)=0.08∗(0.5+j0.8660)=0.04+j0.06928 
○ S21 =3.0∗(cos90∘+jsin90∘)=3.0∗(0+j1)=0+j3.0 
○ S22 =0.6∗(cos(−45∘)+jsin(−45∘))=0.6∗(0.7071−j0.7071)=0.42426−j0.4

2426 
● Calculate S11 ∗S22 : 

S11 ∗S22 =(−0.45−j0.7794)∗(0.42426−j0.42426) 



=(−0.45)(0.42426)+(−0.45)(−j0.42426)+(−j0.7794)(0.42426)+(−j0.7794)(−j0.4
2426) 
=−0.1909+j0.1909−j0.3308+(−1)(0.3308) 
=(−0.1909−0.3308)+j(0.1909−0.3308) 
=−0.5217−j0.1399 

● Calculate S12 ∗S21 : 
S12 ∗S21 =(0.04+j0.06928)∗(0+j3.0) 
=(0.04)(0)+(0.04)(j3.0)+(j0.06928)(0)+(j0.06928)(j3.0) 
=0+j0.12+0+(−1)(0.20784) 
=−0.20784+j0.12 

● Calculate Δ=S11 ∗S22 −S12 ∗S21 : 
Δ=(−0.5217−j0.1399)−(−0.20784+j0.12) 
Δ=(−0.5217+0.20784)+j(−0.1399−0.12) 
Δ=−0.31386−j0.2599 

● Calculate Magnitude of Δ (∣Δ∣): 
∣Δ∣=(−0.31386)2+(−0.2599)2  
∣Δ∣=0.0985+0.0675 =0.166 ≈0.4074 

Step 3: Check the ∣Δ∣<1 condition. 

∣Δ∣=0.4074. Since 0.4074<1, this condition is met. 

Step 4: Calculate the K-factor. 

K=(1−∣S11 ∣2−∣S22 ∣2+∣Δ∣2)/(2∗∣S12 ∗S21 ∣) 

● First, calculate the magnitude of the product ∣S12 ∗S21 ∣ for the 
denominator. 
It's simply the product of their magnitudes: ∣S12 ∣∗∣S21 ∣. 
∣S12 ∗S21 ∣=(0.08)∗(3.0)=0.24 

● Now substitute all values into the K-factor formula: 
K=(1−0.81−0.36+(0.4074)2)/(2∗0.24) 
K=(1−0.81−0.36+0.166)/0.48 
K=(−0.004)/0.48 
K=−0.00833 

Step 5: Check the K > 1 condition. 

K=−0.00833. Since K is not greater than 1 (it's actually negative), this condition 
is NOT met. 

Conclusion of Stability Analysis: 

● Condition 1: ∣Δ∣<1 is MET (0.4074<1). 
● Condition 2: K > 1 is NOT MET (−0.00833<1). 



Because K is less than 1, the transistor at this operating point and frequency 
is conditionally stable. This means the device will oscillate if terminated with 
certain passive source and load impedances. A designer would need to 
carefully map out the unstable regions on a Smith Chart using stability circles 
to ensure that the chosen source and load matching networks keep the 
amplifier out of oscillation. This is a critical step in RF amplifier design to 
guarantee proper operation. 

This detailed, numerical approach allows for a precise understanding of the 
theoretical concepts and their practical application in RF circuit analysis and 
design. 
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